Экологические проблемы энергетического обеспечения человечества. Экологическая опасность современных энергетических комплексов 52 современные экологические проблемы энергетики

Энергетика является важнейшей отраслью, без которой в современных условиях не представляется деятельность людей. Постоянное развитие электроэнергетики приводит к росту количества электростанций, которые оказывают непосредственное воздействие на окружающую среду.

Нет оснований полагать, что в скором будущем значительно изменятся темпы потребления электроэнергии. Поэтому очень важно найти ответы на ряд сопутствующих вопросов:

  1. Какое влияние оказывают самые распространенные виды нынешней энергетики и будет ли изменяться в дальнейшем соотношение этих видов в суммарном энергетическом балансе
  2. Возможно ли сократить негативное влияние современных метод выработки и потребления энергии
  3. Какие максимальные возможности производства энергии их альтернативных источников, которые являются абсолютно экологически чистыми и неисчерпаемыми

Результат действия ТЭС

Каждый отдельный оказывает различное воздействие. По большей части, негативная энергетика вырабатывается от работы тепловых электрических станций. В ходе их функционирования атмосфера загрязняется небольшими элементами золы, поскольку преимущественная часть ТЭС применяет в качестве топлива измельченный уголь.

В целях борьбы с выбросами вредных частиц организовано массовое производство фильтров с КПД 95-99%. Однако это не помогает в полной мере решить проблему, поскольку на многих тепловых станциях, функционирующих на угле, фильтры пребывают в плохом состоянии, в результате чего их КПД сокращается до 80%.

Также воздействуют на окружающую среду, хотя еще несколько десятков лет назад считалось, что ГЭС не способны оказывать негативное влияние. С течением времени стало понятно, что в ходе возведения и последующей эксплуатации ГЭС наносится значительный вред.

Возведение любой гидроэлектростанции подразумевает создание искусственного водохранилища, существенную часть которого при этом занимает мелководье. Вода на мелководье сильно нагревается от солнца и в сочетании с наличием биогенных веществ создает условия для роста водорослей и прочих эвтрофикационных процессов. По этой причине возникает необходимость осуществления очистки воды, в ходе которой очень часто образовывается большая зона подтопления. Таким образом происходит переработка территории берегов и их постепенное обрушение, и подтопления способствуют заболачиванию территорий, расположенных в непосредственной близости к водохранилищам ГЭС.

Влияние АЭС

Осуществляют большое количество выбросов теплоты в водные источники, что значительно увеличивает динамику теплового загрязнения водоемов. Сложившаяся проблема при этом является разносторонней и весьма тяжелой.

На сегодняшний день ключевым источником вредной радиации служит горючее. Для обеспечения безопасности жизнедеятельности необходимо достаточно надежно изолировать горючее.

Для решения данной задачи в первую очередь топливо распределяется по специальным брикетам, благодаря материалу изготовления которых задерживается значительная доля продуктов деления радиоактивных веществ.

Кроме того, брикеты располагаются в тепловыделяющих отделениях, произведенных из сплава циркония. В случае утечки радиоактивных веществ они поступают в охлаждающий реактор, способный претерпевать большое давление. В качестве дополнительной меры обеспечения безопасности для жизнедеятельности людей, атомные электростанции располагаются на определенном расстоянии от жилых массивов.

Возможные варианты решения проблем энергетики

Несомненно, в ближайшей перспективе энергетическая область будет планомерно развиваться и преобладающей останется . Существует большая вероятность повышения доли угля и прочих разновидностей топлива в производстве энергии.

Негативное влияние энергетики на жизнедеятельность требуется снижать? и для этой цели уже разработано несколько способов решения проблемы. Все способы базируются на модернизации технологий подготовки топлива и извлечения опасных отходов. В том числе, для снижения воздействия негативной энергетики предлагается:

  1. Использовать усовершенствованное очистное оборудование. В данное время на большинстве ТЭС улавливаются твердые выбросы при помощи установки фильтров. При этом наиболее вредные загрязнители улавливаются в небольшом количестве.
  2. Сократить поступление соединений серы в атмосферный воздух путем предварительной десульфурации наиболее часто используемых разновидностей топлива. Химические или физические методики позволят извлечь из топливных ресурсов свыше половины серы до начала их сжигания.
  3. Реальная перспектива сокращения негативного воздействия энергетики и уменьшения выбросов связана с простой экономией. Это возможно осуществить за счет использования новых технологий, базирующихся на эксплуатации автоматизированного компьютерного оборудования.
  4. Экономить электроэнергию в быту возможно путем улучшения изоляционных характеристик домов. Добиться высокой экономии энергии позволит смена электрических ламп с КПД не более 5% флуоресцентными.
  5. Заметно повысить КПД топлива и снизить негативный эффект энергетики можно посредством использования топливных ресурсов вместо ТЭС на ТЭЦ. В такой ситуации объекты получения электроэнергии приближаются к местам ее использования и сокращаются потери, возникающие при направлении на большое расстояние. Вместе с электроэнергией на ТЭЦ активно эксплуатируется улавливаемое охлаждающими агентами тепло.

Использование вышеперечисленных способов в определенной мере позволит снизить последствия отрицательного воздействия энергетики. Постоянное развитие энергетической области требует комплексного подхода к решению проблемы и внедрения новых технологий.

  • Вопрос 3. Экономическая эффективность пп и мето­ды ее определения.
  • Вопрос 4. Экономический ущерб от загрязнения и методы его определения
  • Вопрос 5. Основные направления экологизации экономики России.
  • Вопрос 6. Лесное хозяйство и характеристика экологических последствий лесохозяйственной деятельности. Пути экологической оптимизации отрасли.
  • Вопрос 7. Возникновение внешних эффектов и их учет в эколого-экономическом развитии
  • Вопрос 9. Направления формирования экономического механизма природопользования
  • Вопрос 10. Виды и формы платы за природные ресурсы.
  • Вопрос 11. Техногенный тип экономики и его ограничения
  • Вопрос 12. Эколого-экономическое развитие в концепции устойчивости хозяйственных систем
  • Вопрос 13. Экосфера как сложная динамическая саморегулирующаяся система. Гомеостазис экосферы. Роль живого вещества.
  • Вопрос 14. Экосистема и биогеоценоз: определения сходство и различия.
  • Вопрос 15. Биологическая продуктивность (бп) экосистем (биогеоценозов).
  • Вопрос 16. Взаимосвязь биологической продуктивности и экологической стабильности.
  • Вопрос 17. Экологические сукцессии, естественные и искусственные. Использование в практических целях.
  • Вопрос 18. Методы управления популяциями и экосистемами (биогеоценозами).
  • Вопрос 19. Региональные и локальные системы природопользования.
  • Вопрос 20. Традиционное природопользование и его основные виды
  • 1. Традиционное природопользование и его основные виды.
  • 21. Экологические проблемы энергетики и пути их решения.
  • 21. Экологические проблемы энергетики и пути их решения.
  • 22. Экологические проблемы промышленности и пути их решения.
  • 23. Экологические проблемы сельского хозяйства и пути их решения.
  • 24. Экологические проблемы транспорта и пути их решения.
  • 25. Антропогенное воздействие на атмосферу и пути снижения негативного эффекта.
  • 26. Антропогенное воздействие на гидросферу и пути снижения негативного эффекта.
  • 27. Проблема рационального использования земельных ре­сурсов.
  • 31. Роль институционного фактора в концепции устойчивого развития.
  • 32. Антропогенные изменения климата.
  • 33. Основные механизмы взаимодействия гидросферы и атмосферы.
  • 34. Охрана видового и экосистемного разнообразия биосферы.
  • 35. Современные ландшафты. Классификация и распростра­нение.
  • 36. Вертикальная и горизонтальная структура ландшафтов.
  • 37. Проблемы обезлесения и опустынивания.
  • 38. Проблемы сохранения генетического разнообразия.
  • 39. Геоэкологические аспекты глобальных кризисных ситуа­ций: деградация систем жизнеобеспечения экосферы. Ресурс­ные проблемы.
  • 41. Экологическая экспертиза. Основные принципы. Закон рф «Об экологической экспертизе».
  • 42. Устойчивое развитие как основа рационального природо­пользования. Решения конференции в Рио-де-Жанейро (1992) и Всемирного саммита в Йоханнесбурге (2002).
  • 44. Роль автотранспорта в загрязнении окружающей среды.
  • 45. Земледелие как отраслевая система природопользования.
  • 46. Государственные природные заповедники России: статус, режим, функции, задачи и перспективы развития.
  • Вопрос 49. Государственные природные заповедники России: статус, режим, функции, задачи и перспективы развития.
  • Вопрос 51. Экологическая культура как фактор формирования и эво­люции систем природопользования.
  • Вопрос 52. Различия в потреблении природных ресурсов в странах разного типа.
  • 21. Экологические проблемы энергетики и пути их решения.

    В настоящее время энергетические потребности обеспечиваются в основном за счет трех видов энергоресурсов: органического топлива, воды и атомного ядра. Энергия воды и атомная энергия используются человеком после превращения ее в электрическую энергию. В то же время значительное количество энергии, заключенной в органическом топливе, используется в виде тепловой и только часть ее превращается в электрическую. Однако и в том и в другом случае высвобождение энергии из органического топлива связано с его сжиганием, а следовательно, и с поступлением продуктов горения в окружающую среду.

    Экологические проблемы теплоэнергетики

    Воздействие тепловых электростанций на окружающую среду во многом зависит от вида сжигаемого топлива.

    Твердое топливо . При сжигании твердого топлива в атмосферу поступают летучая зола с частицами не­догоревшего топлива, сернистый и серный ангидри­ды, оксиды азота, некоторое количество фтористых соединений, а также газообразные продукты непол­ного сгорания топлива. Летучая зола в некоторых слу­чаях содержит помимо нетоксичных составляющих и более вредные примеси. Так, в золе донецких антра­цитов в незначительных количествах содержится мы­шьяк, а в золе Экибастузского и некоторых других месторождений - свободный диоксид кремния, в золе сланцев и углей Канско-Ачинского бассейна - сво­бодный оксид кальция. К твердому топливу относятся уголь и торф.

    Жидкое топливо . При сжигании жидкого топлива (мазутов) с дымовыми газами в атмосферный воздух по­ступают: сернистый и серный ангидриды, оксиды азо­та, соединения ванадия, солей натрия, а также веще­ства, удаляемые с поверхности котлов при чистке. С экологических позиций жидкое топливо более «гигие­ничное». При этом полностью отпадает проблема золоотвалов, которые занимают значительные территории, исключают их полезное использование и являются ис­точником постоянных загрязнений атмосферы в райо­не станции из-за уноса части золы с ветрами. В продук­тах сгорания жидких видов топлива отсутствует лету­чая зола. К жидкому топливу относится природный газ(???).

    в качестве топлива на тепловых электростанциях используют уголь, нефть и нефтепро­дукты, природный газ и, реже, древесину и торф. Ос­новными компонентами горючих материалов являют­ся углерод, водород и кислород, в меньших количе­ствах содержится сера и азот, присутствуют также сле­ды металлов и их соединений (чаще всего оксиды и суль­фиды).

    В теплоэнергетике источником массированных атмос­ферных выбросов и крупнотоннажных твердых отходов являются теплоэлектростанции, предприятия и установки паросилового хозяйства, т. е. любые предприятия, работа которых связана со сжиганием топлива.

    Наряду с газообразными выбросами теплоэнергети­ка производит огромные массы твердых отходов; к ним относятся зола и шлаки.

    Отходы углеобогатительных фабрик содержат 55-60% SiO2, 22-26% Аl2О3, 5-12% Fe2O3, 0,5-1% CaO, 4-4,5% К2О и Nа2О и до 5% С. Они поступают в отвалы, которые пылят, дымят и резко ухудшают состояние атмосферы и прилегающих территорий.

    Для электростанции, работающей на угле, требует­ся 3,6 млн т угля, 150 м3 воды и около 30 млрд м3 воздуха ежегодно. В приведенных цифрах не учтены нарушения окружающей среды, связанные с добычей и транспортировкой угля.

    Если учесть, что подобная электростанция активно работает несколько десятилетий, то ее воздействие вполне можно сравнить с действием вулкана. Но если последний обычно выбрасывает продукты вулканизма в больших количества разово, то электростанция дела­ет это постоянно.

    Загрязнение и отходы энергетических объектов в виде газовой, жидкой и твердой фазы распределяются на два потока: один вызывает глобальные изменения, а другой - региональные и локальные. Так же обстоит дело и в других отраслях хозяйства, но все же энерге­тика и сжигание ископаемого топлива остаются источ­ником основных глобальных загрязнителей. Они посту­пают в атмосферу, и за счет их накопления изменяется концентрация малых газовых составляющих атмосфе­ры, в том числе парниковых газов. В атмосфере появились газы, которые ранее в ней практически отсут­ствовали - хлорфторуглероды. Это глобальные заг­рязнители, имеющие высокий парниковый эффект и в то же время участвующие в разрушении озонового экрана стратосферы.

    Таким образом, следует отметить, что на современ­ном этапе тепловые электростанции выбрасывают в ат­мосферу около 20% от общего количества всех вредных отходов промышленности. Они существенно влияют на окружающую среду района их расположения и на со­стояние биосферы в целом. Наиболее вредны конденса­ционные электрические станции, работающие на низ­косортных видах топлива.

    Сточные воды ТЭС и ливневые стоки с их территорий, загрязненные отходами технологических циклов энер­гоустановок и содержащие ванадий, никель, фтор, фе­нолы и нефтепродукты, при сбросе в водоемы могут оказать влияние на качество воды, водные организмы. Изменение химического состава тех или иных веществ приводит к нарушению установившихся в водоеме ус­ловий обитания и сказывается на видовом составе и чис­ленности водных организмов и бактерий и в конечном счете может привести к нарушениям процессов само­очищения водоемов от загрязнений и к ухудшению их санитарного состояния.

    Представляет опасность и так называемое тепловое загрязнение водоемов с многообразными нарушения­ми их состояния. ТЭС производят энергию при помощи турбин, приводимых в движение нагретым паром. При работе турбин необходимо охлаждать водой от­работанный пар, поэтому от энергетической станции непрерывно отходит поток воды, подогретой обычно на 8-12 °С и сбрасываемой в водоем. Крупные ТЭС нуждаются в больших объемах воды. Они сбрасыва­ют в подогретом состоянии 80-90 м3/с воды. Это оз­начает, что в водоем непрерывно поступает мощный поток теплой воды примерно такого масштаба, как река Москва.

    Зона подогрева, образующаяся в месте впадения теплой «реки», представляет собой своеобразный уча­сток водоема, в котором температура максимальна в точке водосброса и уменьшается по мере удаления от нее. Зоны подогрева крупных ТЭС занимают пло­щадь в несколько десятков квадратных километров. Зимой в зоне подогрева образуются полыньи (в се­верных и средних широтах). В летние месяцы тем­пературы в зонах подогрева зависят от естественной температуры забираемой воды. Если в водоеме тем­пература воды 20 °С, то в зоне подогрева она может достигнуть 28-32°С.

    В результате повышения температур в водоеме и нарушения их естественного гидротермического ре­жима интенсифицируются процессы «цветения» воды, уменьшается способность газов растворяться в воде, меняются физические свойства воды, ускоряются все химические и биологические процессы, протекающие в ней, и т. д. В зоне подогрева снижается прозрач­ность воды, увеличивается рН, увеличивается скорость разложения легко окисляющихся веществ. Скорость фотосинтеза в такой воде заметно понижается.

    Экологические проблемы гидроэнергетики

    Несмотря на относительную дешевизну энергии, получаемой за счет гидроресурсов, доля их в энерге­тическом балансе постепенно уменьшается. Это свя­зано как с исчерпанием наиболее дешевых ресурсов, так и с большой территориальной емкостью равнин­ных водохранилищ. Считается, что в перспективе мировое производство энергии ГЭС не будет превы­шать 5% от общей.

    Одной из важнейших причин уменьшения доли энер­гии, получаемой на ГЭС, является мощное воздействие всех этапов строительства и эксплуатации гидросоору­жений на окружающую среду.

    По данным разных исследований, одним из важнейших воздействий гидроэнер­гетики на окружающую среду является отчуждение значительных площадей плодородных (пойменных) земель под водохранилища. В России, где за счет ис­пользования гидроресурсов производится не более 20% электрической энергии, при строительстве ГЭС затоп­лено не менее 6 млн га земель. На их месте уничтоже­ны естественные экосистемы.

    Значительные площади земель вблизи водохрани­лищ испытывают подтопление в результате повышения уровня грунтовых вод. Эти земли, как правило, пере­ходят в категорию заболоченных. В равнинных усло­виях подтопленные земли могут составлять 10% и бо­лее от затопленных. Уничтожение земель и свойствен­ных им экосистем происходит также в результате их разрушения водой (абразии) при формировании бере­говой линии. Абразионные процессы обычно продолжа­ются десятилетиями, имеют следствием переработку больших масс почвогрунтов, загрязнение вод, заиление водохранилищ. Таким образом, со строительством во­дохранилищ связано резкое нарушение гидрологичес­кого режима рек, свойственных им экосистем и видо­вого состава гидробионтов.

    В водохранилищах резко усиливается прогревание вод, что интенсифицирует потерю ими кислорода и дру­гие процессы, обусловливаемые тепловым загрязнени­ем. Последнее, совместно с накоплением биогенных ве­ществ, создает условия для зарастания водоемов и ин­тенсивного развития водорослей, в том числе и ядови­тых сине-зеленых. По этим причинам, а также вслед­ствие медленной обновляемости вод резко снижается их способность к самоочищению.

    Ухудшение качества воды ведет к гибели многих ее обитателей. Возрастает заболеваемость рыбного стада, особенно поражаемость гельминтами. Снижаются вку­совые качества обитателей водной среды.

    Нарушаются пути миграции рыб, идет разрушение кормовых угодий, нерестилищ и т. п. Волга во многом потеряла свое значение как нерестилище для осетровых Каспия после строительства на ней каскада ГЭС.

    В конечном счете, перекрытые водохранилищами речные системы из транзитных превращаются в транзитно-аккумулятивные. Кроме биогенных веществ здесь аккумулируются тяжелые металлы, радиоактив­ные элементы и многие ядохимикаты с длительным периодом жизни. Продукты аккумуляции делают про­блематичной возможность использования территорий, занимаемых водохранилищами, после их ликвидации.

    Водохранилища оказывают заметное влияние на ат­мосферные процессы. Например, в засушливых (арид­ных) районах испарение с поверхности водохранилищ превышает испарение с равновеликой поверхности суши в десятки раз.

    С повышенным испарением связано понижение тем­пературы воздуха, увеличение туманных явлений. Раз­личие тепловых балансов водохранилищ и прилегаю­щей суши обусловливает формирование местных вет­ров типа бризов. Эти, а также другие явления имеют следствием смену экосистем (не всегда положитель­ную), изменение погоды. В ряде случаев в зоне водохра­нилищ приходится менять направление сельского хо­зяйства. Например в южных районах нашей страны некоторые теплолюбивые культуры (бахчевые) не ус­певают вызревать, повышается заболеваемость расте­ний, ухудшается качество продукции.

    Издержки гидростроительства для среды заметно меньше в горных районах, где водохранилища обычно невелики по площади. Однако в сейсмоопасных горных районах водохранилища могут провоцировать земле­трясения. Увеличивается вероятность оползневых яв­лений и вероятность катастроф в результате возможно­го разрушения плотин.

    В силу специфики технологии использования водной энергии гидроэнергетические объекты преобразуют природные процессы на весьма длительные сроки. На­пример водохранилище ГЭС (или система водохрани­лищ в случае каскада ГЭС) может существовать десятки и сотни лет, при этом на месте естественного водо­тока возникает техногенный объект с искусственным регулированием природных процессов - природно-техническая система (ПТС).

    Рассматривая воздействие ГЭС на окружающую сре­ду, следует все же отметить жизнесберегающую фун­кцию ГЭС. Так, выработка каждого млрд кВтч элект­роэнергии на ГЭС вместо ТЭС приводит к уменьшению смертности населения на 100-226 чел./год.

    Проблемы ядерной энергетики

    Ядерная энергетика в настоящее время может рассматриваться как наиболее перспективная. Это связано как с относительно большими запасами ядерного топлива, так и со щадящим воздействием на среду. К преимуществам относится также возможность строительства АЭС, не привязываясь к месторождениям ресурсов, поскольку их транспортировка не требует существенных затрат в связи с малыми объемами. До­статочно отметить, что 0,5 кг ядерного топлива по­зволяет получать столько же энергии, сколько сжи­гание 1000 т каменного угля.

    Многолетний опыт эксплуатации АЭС во всех стра­нах показывает, что они не оказывают заметного вли­яния на окружающую среду. К 1998 г. среднее время эксплуатации АЭС составило 20 лет. Надежность, бе­зопасность и экономическая эффективность атомных электростанций опирается не только на жесткую регламентацию процесса функционирования АЭС, но и на сведение до абсолютного минимума влияния АЭС на ок­ружающую среду.

    При нормальной работе АЭС выбросы радиоактивных элементов в окружающую среду крайне незначительны. В среднем, они в 2-4 раза меньше, чем от ТЭС одинаковой мощности.

    До Чернобыльской катастрофы в нашей стране ника­кая отрасль производства не имела меньшего уровня производственного травматизма, чем АЭС. За 30 лет до трагедии при авариях, и то не по радиационным при­чинам, погибло 17 человек. После 1986 г. главную эко­логическую опасность АЭС стали связывать с возмож­ностью аварии. Хотя вероятность их на современных АЭС и невелика, но она не исключается.

    До недавнего времени основные экологические проблемы АЭС связывались с захоронением отработанного топлива, а также с ликвидацией самих АЭС после окончания допустимых сроков эксплуатации. Имеются данные, что стоимость таких ликвидационных работ составляет от 1/6 до 1/3 от стоимости самих АЭС. В целом можно назвать следующие воздействия АЭС на среду:1 - разрушение экосистем и их элементов (почв, грунтов, во-доносных структур и т. п.) в местах добычи руд (особенно при открытом способе); 2 - изъятие земель под строительство самих АЭС; 3 - изъятие значительных объемов вод из различных источников и сброс подогретых вод; 4 - не исключено радиоактивное загрязнение атмосферы, вод и почв в процессе добычи и транспортировки сырья, а также при работе АЭС, складировании и переработке отходов, их захоронениях.

    Несомненно, что в ближайшей перспективе тепловая энергетика будет оставаться преобладающей в энергетическом балансе мира и отдельных стран. Велика вероятность увеличения доли углей и других видов менее чистого топлива в получении энергии. Некоторые пути и способы их использования позволяют существенно уменьшать отрицательное воздействие на среду. Эти способы базируются в основном на совершенствовании технологий подготовки топлива и улавливания вредных отходов. В их числе:

    1. Использование и совершенствование очистных устройств.

    2. Уменьшение поступления соединений серы в атмосферу посредством предварительного обессеривания (десульфурации) углей и других видов топлива (нефть, газ, горючие сланцы) химическими или физическими методами.

    3. Большие и реальные возможности уменьшения или стабилизации поступления загрязнений в среду связаны с экономией электроэнергии.

    4. Не менее значимы возможности экономии энергии в быту и на производстве за счет совершенствования изоляционных свойств зданий. Крайне расточительно использование электрической энергии для получения тепла. Поэтому прямое сжигание топлива для получения тепла, особенно газа, намного рациональнее, чем через превращение его в электричество, а затем вновь в тепло.

    5. Заметно повышается также КПД топлива при его использовании вместо ТЭС на ТЭЦ. + Использование альтернативной энергетики

    6. Использование по возможности альтернативных источников энергии.

    Ход урока

    I. Проверка ранее изученного материала.

    Словарный диктант

    1. Конкретные виды материи и энергии, которые обеспечивают развитие общества, формируются в природной сфере …

    (природные ресурсы)

    1. К какому виду природных ресурсов относятся возобновимые и невозобновимые природные ресурсы?

    (исчерпаемые)

    1. К какому виду ресурсов относятся космические ресурсы, водные ресурсы, энергия ветра?

    (неисчерпаемые)

    1. Перечислите топливно-энергетические минеральные ресурсы.

    (нефть, газ, уголь, торф, горючие сланцы, радиоактивное топливо)

    1. Перечислите металлические минеральные ресурсы.

    (черные, цветные, легирующие, редкие, благородные)

    1. Основные проблемы в добывающей промышленности.

    (истощение минеральных ресурсов, потери, отходы,

    нарушение поверхностных слоев литосферы)

    1. Основные проблемы в обрабатывающей промышленности.

    (ухудшение качества воздуха, потребление огромного

    количества воды, изъятие земельных ресурсов)

    1. Какие леса мира составляют самую большую площадь? Какие леса на первом месте по запасам древесины?

    (северные хвойные леса – 25,4%;

    тропические леса – 60% по оценке биологов, 61% по оценке лесоводов)

    1. Как называются леса 80-100 летнего возраста из хвойных пород?

    (спелые леса)

    1. Какая обрабатывающая промышленность дает самые большие выбросы веществ в атмосферу?

    (черная металлургия – 25,4%)

    II. Изучение нового материала.

    Энергетические потребности человечества.

    Для удовлетворения своих потребностей в пище, тепле, транспорте, трудовой деятельности, образовании, отдыхе, поддержании здоровья и т.д. люди должны располагать большим количеством энергии, производство которой обычно связано со значительным негативным влиянием на окружающую среду.

    Современная промышленная цивилизация зависима от получения энергии. И одна из проблем, вытекающих из этого, загрязнение окружающей среды. Так же большой проблемой является неравномерность потребления энергии в мире. По данным ЮНЕСКО на середину 90-х годов

    Основным источником получения энергии является природное топливо, и поэтому решение проблем, связанных с использованием природного топлива (парниковый эффект), весьма затруднительно. Только 1/3 энергетических потребностей покрывается за счет иных источников.

    Экологические проблемы энергетики

    Основой развития любого региона или отрасли экономики является энергетика. Темпы роста производства, его техничес­кий уровень, производительность труда, в конечном итоге уро­вень жизни населения в очень значительной степени опреде­ляются развитием энергетики.

    I. Основным источником энергии в нашей стране и многих других странах мира является в настоящее время тепловая энергия , получае­мая от сгорания органического топлива - угля, нефти, газа, торфа, горючих сланцев. Вместе с тем ТЭС являются крупнейшими загрязнителями среды.

    Наиболее характерно химическое и тепловое загрязнение.

    Химическое загрязнение.

    Поскольку сгорание топлива не бывает полным, то при сжигании твердого топлива образуется боль­шое количество золы, диоксида серы, канцерогенов. Эти вещества загрязняют окружающую среду и влияют на все компоненты природы.

    Так, диоксид серы загрязняя атмосферу, вызывает кислотные дожди. Они, в свою очередь, закисляют почву, снижая эффективность применения удобрений, изменяют кислотность вод, что сказывается на ви­довом многообразии водного сообщества. Диоксид серы существенно влия­ет и на растительность. Наиболее чувствительны к диоксиду серы хвой­ные и лиственные леса, так как он накапливается в листьях и хвое. При содержании диоксида серы в воздухе от 0,23 до 0,32 мг/м 3 происходит усыхание сосны за 2-3 года в результате на­рушения фотосинтеза и процесса дыхания. Аналогичные изменения у лиственных деревьев возникнут при концентрации диоксида серы 0,5-1,0 мг/м 3 .

    Подорожание нефти и сокращение ее добычи послужили причиной увеличения в балансе энергоносителей доли угля. В итоге если в начале 80-х гг. в атмосферу Европы поступа­ло от сжигания угля примерно 60 млн. т диоксида серы, то в 90-х эта принудительная нагрузка новой угольной эры превысит 70 млн. т. И это несмотря на то, что за последнее время многие западноевропейские страны приняли меры для сокращения выбросов,

    Диоксид серы легко переносится ветром через границы государств, и, таким образом, проблема становится международной.

    Тепловое загрязнение.

    Часть тепла при сжигании топлива теряется в атмосфере. Тепловые выбросы приводят к росту среднегодовой температуры, образуются пространственные «острова теплоты», превышающие естественную температуру воздуха на 1°-4°С.

    Помимо теплового и химического загрязнения, ТЭС являются источником шума, электромаг­нитных и радиоактивных излучений .

    Пути решения проблем

    1. Решения должны приниматься на каждом этапе технологического производства, начиная с подготовки сырья.

    2. Совершенствование технологических процессов. Новые технологии позволят сократить долю выбросов, а си­стемы очистки - их уловить, а затем утилизировать.

    3. Должны приниматься меры по рациональному размещению источ­ников загрязнений: вынесению промышленных предприятий из крупных городов в районы с не­пригодными или малопригодными для сельскохозяйственного исполь­зования землями; оптимальному расположению предприятий с уче­том топографии местности и розы ветров; установлению санитарно-защитных зон вокруг предприя­тий; рациональной планировке го­родской застройки, обеспечиваю­щей оптимальные экологические условия для человека.

    II. Гидроэнергетика - получение энергии от текущей воды на ГЭС.

    В ряде стран мира гидроэнергетика занимает ведущее ме­сто.

    Так, в Норвегии на долю ГЭС приходится около 100% всего производства электроэнергии, в Бразилии, Канаде, Шве­ции - более 50%. Большое развитие гидростроительство полу­чило и в нашей стране.

    Назовите крупнейшие ГЭС России. Какие экологические достоинства они имеют по сравнению с ТЭС?

    К положительным последствиям работы ГЭС относят

    Воз­можность регулирования стока воды с помощью плотин и во­дохранилищ;

    Орошение полей;

    Защита прилегающих террито­рий от наводнений катастрофического характера.

    При этом улучшаются условия судоходства, углубляется фарватер, за­топляются

    пороги. Водохранилища создают возможность для разведения озерных пород

    рыб, массового отдыха.

    К серьезным негативным экологическим последствиям строительства ГЭС на равнинных реках относят:

    Затопление земель (заливных высокопродуктивных лу­гов, лесных массивов, населенных пунктов);

    Снижение скорости течения реки, замедление водооб­мена и самоочищения;

    Повышение сейсмической активности в некоторых райо­нах вследствие меняющегося уровня давления воды на лито­сферу;

    Изменение микроклимата окружающей территории;

    Подтопление берегов, заболачивание, оползневые про­цессы;

    Развитие сине-зеленых водорослей;

    Сокращение стада ценных промысловых рыб и другие.

    Пути решения проблем

    1. Прежде чем приступить к реализации очередного гидро­технического проекта, необходимо просчитать все последствия, к которым приведет его введение в строй.

    2. Серьезное внимание следует обратить на малые и микро-ГЭС, которые могут быть созданы на небольших реках без плотин. Решить проблему «большой» энергетики они, конечно, не смогут, но вырабатывать энергию для отдельных хозяйств, населенных пунктов они в силе. К тому же их несомненным достоинством является минимальное воздействие на природу. Микро ГЭС Башкортостана:

    III. Ядерная энергетика - очень молодая отрасль. Первая АЭС в мире была пущена в 1954 г. в СССР, после чего началось бурное развитие ядерной энергетики. В настоящее время, по данным МАГАТЭ, ядерная энергетика развита почти в 30 стра­нах мира. Доля АЭС в общем производстве электроэнергии в мире на начало 1990 г. составила примерно 17%.

    Преимущества АЭС

    1. Возможность приблизить станцию к потребителю энергии.

    2. Количество образующихся отходов здесь значительно меньше, чем на ТЭС.

    3. Одна из возможностей экономии угля, нефти, газа.

    Проблемы ядерной энергетики

    1. Проблема радиоактивных отходов: переработка и захоронение.

    2. Демонтаж АЭС.

    Пути решения проблем

    1. Сокращение отходов за счет совершенствования технологии и вторичная их переработка.

    2. Совершенствование технологии захоронения в целях большей безопасности.


    Похожая информация.


    Одним из важнейших факторов, определяющих уровень экономического развития общества, является уровень использования и количество потребляемой энергии на душу насе­ления. Процессы превращения первичной энергии, имеющей место в обще­стве, связывают между собой экономические, социальные и экологические показатели. Социальный уровень жизни определяется количеством энергии, потребляемой человеком, а это значит, что для повышения качества жизни необ­ходимо вырабатывать больше энергии. Основным источником энергии в на­стоящее время является нефть, газ и уголь.

    Традиционные способы выработки тепло- и электроэнергии в котельных и на ТЭС из этих первичных источников энергии, использование топлива в топливопотребляющих технологических установках сопряжены с разносто­ронним локальным и глобальным воздействием на окружающую среду:

    Сбросом минерализованных и нагретых вод; .

    Потреблением в значительных количествах кислорода и воды;

    Изъятием больших площадей земли для захоронения отходов (шлака, золы) и др.

    Это воздействие является причиной закисления почвы и воды, способст­вует возникновению парникового эффекта, обуславливающего повышение планетарной температуры, провоцирует другие необратимые процессы. Кроме того, органическое топливо - это невосполнимые источники энергии, а это значит, что темпы их возобновления во много раз ниже темпов их потребления.

    В результате антропогенной деятельности человечества за последние 30-40 лет планетарная температура поднялась на 0,6-0,7 °С и является наи­более высокой за последние 600 лет. Поднялся средний уровень океанов по сравнению с прошлым столетием на 10-15 см. За это же время отступили все зарегистрированные горные ледники.

    Научные оценки в основном совпадают в констатации усиления тенден­ции к потеплению климата. Средняя температура на планете к 2015 году может повыситься на 1,3 -1.5°С. Спектр пагубных тенденций может быть очень широким: от повышения мирового океана на 0,3-1,0 м до изменения кли­матических систем перераспределения осадков.

    Современные технологии способны оказывать негативное воздействие не только на климат, но и на здоровье людей. Согласно докладу группы экс­пертов, опубликованных в 1997 г., воздействие продуктов сжигания только твердого топлива в период до 2020 г. может обернуться ежегодной смертью 700 тыс. человек. Сокращение же выбросов на 10-15 % спасло бы жизнь 8 млн. человек. Из сказанного следует вывод: обеспечивая повышение жиз­ненного уровня населения, в каждом государстве необходимо стремиться к разработке таких предметов потребления и технологий их производства, ко­торые потребляли бы меньшее количество энергии, обеспечивая параметры их, выше параметров своих предшествующих аналогов, и тем самым уменьшая вредное воздействие на окружающую среду.

    Осознание необходимости принятия конкретных мер по уменьшению воздействия на климат пришло к мировому сообществу уже давно, и в сере­дине 70-х годов XX в. начались активные работы в этом направлении: в 1978 г. Климатическую программу приняли в США; в 1979 г. на Всемирной климатической конференции в Женеве заложены основы Всемирной клима­тической программы; в 1988 г. Всемирной метеорологической организацией (ВМО) и Программой ООН по окружающей среде (UNEP) учреждена Меж­правительственная группа экспертов по изменению климата (МГЭИК); 9 мая 1992 г. в Нью-Йорке в соответствии с резолюцией Генеральной Ассамблеи ООН об охране глобального климата в интересах нынешнего и будущего по­колений принята Рамочная конвенция ООН об изменении климата.

    Существует проблема и авиационной экологии. Самолет воздействует на атмосферу не только механически, направляя поток импульса воздуха вниз на Землю, но и энергетически, физически, химически и оптически. При сжигании топлива в атмосферу выделяется тепловая энергия, а вместе с ней образуется большое количество оксидов и кислот (азота, серы, углерода, хлора), происходит конденсация водяного пара в струйно-вихревом следе, легко наблюдаемом с Земли в виде белых шлейфов. Помимо перечисленных существует и проблема звукового удара.

    Придавая важность необходимости изучения среды обитания человека, в июне 1992 г. в Рио-де-Жанейро состоялась конференция с участием первых лиц 156 государств, которые подписали так называемую Рамочную конвен­цию об изменении климата. Развитием ее является известный Киотский про­токол 1997 года. Это первый в истории человечества случай, когда практи­чески все мировое сообщество подключилось к решению такой сложной на­учной задачи, как охрана климата. Основным содержанием Киотского протокола является обязательство 35 стран мира по сокращению эмиссии пар­никовых газов, в первую очередь СО2, к концу 2012 г., по сравнению с базо­вым 1990 г., от 92 до 100 %. Согласно протоколу, промышленно развитые страны должны снизить такие выбросы на 5,2 %.

    И хотя Киотский договор до сих пор не вошел в силу, поскольку он не ратифицирован большинством стран, тем не менее темпы роста эмиссии диоксида углерода в атмосферу резко замедлились еще 10-12 лет тому назад. Анализ перспективных структур мирового энергоба­ланса позволяет заключить, что пик этой эмиссии будет зафиксирован в те­чение ближайших 20-25 лет на уровне, не слишком отличающемся от со­временного. В настоящее время выбросы составляют около 7 млрд. т углеро­да в год, а ожидаемый пик по прогнозам составит примерно 9 млрд. т в год.

    6.2. Парниковый эффект

    Глобальное потепление является твердо установленным научным фак­том. За последние 20-25 лет зафиксированное потепление составило 0,35 °С. По прогнозам пик глобального потепления будет зафиксирован на уровне 1,5-2,0 °С выше современного примерно через 200 лет. В Беларуси с 1989 г. среднегодовая температура повысилась на 1,1°С.

    Основной причиной глобальных процессов, изменение климата на нашей планете являются существующие технологии, оказывающие негативное воз­действие не только на климат, но и на здоровье людей, выбрасывая в атмо­сферу парниковые газы, которые обуславливают парниковый эффект.

    Парниковый эффект - это свойство атмосферы пропускать солнечную радиацию, но задерживать земное излучение и, тем самым, способствовать аккумуляции тепла Землей, средняя температура которой в настоящее время составляет около 15 °С. При данной температуре поверхность планеты и ат­мосфера находятся в тепловом равновесии.

    До вмешательства человека в глобальные процессы Земли, изменения, происходящие на ее поверхности и в атмосфере, были связаны с содержани­ем в природе газов, которые и были названы «парниковыми». К таким газам относятся: диоксид углерода, метан, оксид азота и водяной пар. В настоящее время к ним добавились антропогенные хлорфторуглероды (ХФУ). Без газо­вого «одеяла», окутывающего Землю, температура на ее поверхности была бы ниже на 30 ... 40 °С, что обусловило бы проблематичность существова­ния живых организмов в таких условиях.

    В результате техногенной деятельности человека изменяется общий баланс тепла, влаги и веществ в атмосфере Земли. Это касается прежде всего углекислого газа, содержание которого из десятилетия в десятилетие неуклонно растет. Углекислый газ создает 50 % парникового эффекта, на долю ХФУ приходится 15-20 % и на долю метана - 18 %.

    В приложении к климатической Конвенции ООН названы технологиче­ские процессы, приводящие к эмиссии парниковых газов:

    В энергетике - сжигание топлива, энергетическая, обрабаты­вающая и строительная промышленности;

    При добыче и транспортировке топлива - твердое топливо, нефть и природный газ;

    Промышленные технологии - горнодобывающая, химиче­ская, металлургическая, производство и использование галогенизированных углеродных соединений;

    В сельском хозяйстве - интенсивная ферментация, хранение и использование навоза, производство риса, управляемый пал, сжигание сельскохозяйственных отходов;

    Отходы - хранение и сжигание отходов, обработка сточных вод.

    Основным загрязнителем атмосферы является С02, образующийся при выработке электроэнергии в основном огневым способом, то есть путем сжигания добываемого органического топлива. Практически весь исполь­зуемый Европой газ применяется в огневых технологиях. Евросоюз с насе­лением 16 % от общего населения в мире является в настоящее время одним из загрязнителей мировой атмосферы (26 %). На США приходится 20 % ми­ровой эмиссии парниковых газов. Выброс парниковых газов при огневом энергопроизводстве составляет около 1,4 кг на 1 кВт∙ч. Производство же электроэнергии на основе безэмиссионных технологий связано с их высокой стоимостью.

    Большинство энерготехнологий, основанных на возобновляемых источ­никах, требуют, как видно из приведенного рисунка, больших затрат, в том числе и материальных. А они, в свою очередь, обуславливают повышенные энергозатраты, а значит, сопряжены с дополнительной эмиссией тех же пар­никовых газов.

    Прекращение ввода в эксплуатацию АЭС в большинстве стран мира в связи с аварией на Чернобыльской АЭС резко увеличило нарастание эмис­сии парниковых газов. А между тем, страны, производящие 19 % электро­энергии на АЭС, предотвращают эмиссию 540 млн. т С0 2 в год. Поэтому на конференции в Киото подчеркивалось, что только страны, имеющие ядерно-энергетические программы и поддерживающие их, располагают большими возможностями сокращения выброса парниковых газов. И в некоторых странах Европы пересматривают свое отношение к ядерной энергетике.

    В Англии обсуждается план удвоения мощностей АЭС, а Франция про­должает лидировать в наращивании АЭС.

    Считается возможным увеличение производства электроэнергии с ны­нешних 2 300 млрд.кВт ч в год (18 % мирового энергопроизводства 444 атомными энергоблоками) до 12 ООО млрд кВт ч в первой половине XXI века и до 50 ООО млрд кВт ч - во второй половине.

    Среди стран мира самым крупным загрязнителем окружающей среды яв­ляются США, эмиссия диоксида серы у которых составляет около 7,7 млн. т, т. е. более 20 % от суммарной общемировой эмиссии С0 2 . В Китае выбросы в атмосферу этого вредного соединения составляют 7,6 млн. т, а в России -6,2 млн. т.

    По относительным показателям эмиссии С0 2 (выбросы в тоннах на 1 МВт установленной электрической мощности ТЭС) крупнейшим загряз­нителем воздуха можно считать Россию (87 т/МВт), затем следует Индия и Великобритания (по 65 т/МВт), Китай (61 т/МВт). В Германии и Японии этот показатель составляет всего 7 т/МВт 2 .

    Одним из самых загрязненных городов-столиц государств является Пе­кин с его 12-милионным населением. Основной причиной его загрязнения являются промышленные предприятия, густо разбросанные по городу. Во многом способствует загрязнению Пекина и отопление домов углем.

    За последние 5 лет по «экологическим» причинам в Китае было закрыто 73 тыс. предприятий. К 2001 году более 90 % из 238 тыс. производств, кото­рым были предъявлены претензии со стороны государства, выполнили не­обходимые мероприятия и теперь соответствуют государственным экологи­ческим стандартам. В результате, за годы бурного экономического роста за­грязнение окружающей среды удалось сократить на 10 % по сравнению с1995 годом. В течение ближайших 5 лет, Китай намерен снижать количество вредных выбросов на 10 % ежегодно. Достигаться это будет путем внедре­ния новых технологий и экологически чистых процессов производства. Наиболее высокие уровни выброса С0 2 имеют электростанции, работающие на угле. Выбросы С0 2 зависят от уровня содержания углерода в топливе (наивысшего - для угля, низшего - для природного газа).

    Киотским протоколом (1997 г.) закреплены количественные обязательст­ва как развитых стран, так и стран с переходной экономикой по ограниче­нию и снижению поступления парниковых газов (прежде всего С0 2) в атмо­сферу. Но этот протокол начнет действовать только после его ратификации в тех странах, которые дают 55 % всех выбросов С0 2 . Отсюда следует, что если Россия и США этого не сделают, то протокол так и не станет действен­ным документом, хотя он подписан 84 государствами, а по состоянию на се­редину 2001 г. его ратифицировали 29 развивающихся стран и Франция -единственная из стран «восьмерки».

    Подтверждением несостоятельности Протокола Киото стала 6-я конфе­ренция стран, подписавших Рамочную конвенцию ООН по проблеме изме­нения климата (13-24 ноября 2000 года). Семь тысяч участников представ­ляли 182 правительства, 323 межправительственные и неправительственные организации и 443 органа средств массовой информации .

    Предполагается, что к 2020 г. мировое потребление электроэнергии вы­растет на 60 % по сравнению с 1967 г. При этом в развивающихся странах прирост потребления энергии составит 121 %. Вероятно, более быстрым, чем ожидалось ранее, окажется рост эмиссии С0 2: на 40 % - с 1990 по 2010 гг. и на 72 % - с 1990 до 2020 гг.

    Основным источником загрязнения окружающей среды является автотранспорт. Он использует 96 % всех производимых нефтепродуктов и выбрасывает затем в атмосферу тысячи тонн оксида углеводорода, оксида азота и других вредных веществ. Всего в выхлопных газах двигателя внутреннего сгорания содержится около 100 вредных для здоровья человека соединений. В среднем каждый автомобиль в год выбрасывает около 1т вредных веществ. Кроме того, эти вещества вместе с выбра­сываемыми в атмосферу вредными веществами промышленных предпри­ятий и при горении древесины содержат частицы размером менее 25,5 мик­рон, которые проникают в легкие и другие ткани, вызывая воспаление и формирование тромбов, которые оказывают крайне неблагоприятное воз­действие на работу сердца, провоцируя развитие сердечных приступов: ин­фаркта и повышения давления. Наряду с этим, автомобиль – один из самых крупных источников шума и вибрации.

    Автомобиль, являющийся символом современной цивилизации, принес не только благо для людей, но и неблагоприятное воздействие на окружающую среду Ныне в мире эксплуатируется около 600 млн автомобилей, которые еже­годно потребляют свыше 1 млрд. т моторных топлив, в том числе более 600 млн. т автомобильных бензинов. К концу 2010 года прогнозируется увеличение числа автомобилей до 1 млрд. Экологическая нагрузка на окру­жающую среду и человека от такого количества автомобилей окажется очень ощутимой. И поэтому во многих странах ведется большая работа не только над снижением расхода топлива на 100 км пробега, но и по исполь­зованию для автомобилей вместо бензина в качестве топлива альтернатив­ных источников энергии, в том числе газа, водорода, электроэнергии и энергии солнца.

    Вместе с разрабатываемыми в мире мерами по замене жидкого топлива из нефтепродуктов, используемого ныне в автомобилях, на альтернативные виды топлива из растительного сырья, снижению удельных норм расхода топлива на 100 км пробега, во многих странах проводится большая работа по переводу автомобилей на газ в качестве моторного топлива. И если вда­ваться в историю вопроса, то первый в мире двигатель внутреннего сгора­ния работал на газе. С изобретением бензина он вытеснил газ на полторы сотни лет. Но человечество за это время пришло к мысли о пагубности для себя технологии сжигания моторного топлива из нефтепродуктов и превра­щения его в газ, в результате чего происходит колоссальное загрязнение ок­ружающей среды, и начало возвращаться к использованию газа в качестве моторного топлива. В настоящее время в мире на метане работает порядка 1 млн. автомобилей, число которых стремительно растет и в скором времени обещает достигнуть 6,5 млн. В городах США, Канады и Западной Европы планируют в самые сжатые сроки полностью перевести муниципальный транспорт на газ. В США к 2040г поставлена задача перевода автотранспорта на альтернативные виды топлива. 36 регионов России заключили договоры с «Газпромом», в которых предусмотрен специальный пункт о переводе автотранспорта на га­зомоторное топливо. Активно работают в этом направлении и страны Азии: Южная Корея, Китай, Пакистан, Индия.

    В Беларуси в настоящее время насчитывается не более 20 тыс. газоболонных автомобилей, что составляет немногим более 0,05 % от их общего коли­чества (3800 тыс.), хотя поставки газа стабильны и цены более постоянны. При этом следует заметить, что 1 л бензина по своей теплотворной способности практически равен 1 м 3 газа.

    Вместе с тем загрузка 24 автозаправочных компрессорных станций, рас­положенных в 17 городах на основных транспортных направлениях респуб­лики, не превышает 25 %. Причин этому несколько: отсутствие у предпри­ятий денег на переоборудование транспорта, непонимание отдельными ру­ководителями преимуществ газомоторного топлива и др. А ведь материаль­ные затраты на топливо при эксплуатации автомобиля на бензине составля­ют 25-30 % от себестоимости перевозок, а с использованием сжиженного природного газа - не более 10-15 %.

    Кроме экономической выгоды, работа автомобилей на природном газе сокращает выброс наиболее вредных компонентов в 1,5-5 раз по сравнению с бензином и в 10 раз по сравнению с дизельным то­пливом. Но транспортные организации не заинтересованы в использовании более дешевого топлива, поскольку затраты на него входят в себестоимость транспортных услуг, которые затем в виде тарифа ложатся в себестоимость продукции заказчика транспорта, и в конечном итоге, в розничную цену, по которой отпускается продукция потребителям.

    Переоборудование легкового транспорта типа ГАЗ-3110 окупается через 30 тыс. км пробега, грузового, как ГАЗ-3307 и ГАЗ-3302 - через 21,6 тыс. км, а для ЗИЛ-138А еще меньше. При условии, что в среднем за рабочий день автомобиль преодолевает расстояние в 100 км, установка на него, каза­лось бы, дорогостоящей аппаратуры полностью окупается через год для лег­ковых автомобилей и через 6-6,5 месяцев - для грузовых.

    Ссылка отдельных руководителей на утяжеление автомобиля после пе­реоборудования его на газомоторное топливо является несостоятельной, по­скольку коэффициент использования грузоподъемности автотранспорта со­ставляет 0,5-0,6.

    Мировой опыт показывает, что наиболее приемлемым и реально ощути­мым шагом к уменьшению вредных выбросов в атмосферу от автомобилей может стать глобальный переход автомобильной техники на природный газ. Он экологичен, дешев, безопасен в эксплуатации.

    К настоящему времени во многих странах производителями автомобилей проводятся испытания различных типов электромобилей с запасом кода 60-300 км и максимальной скоростью до 80 км/ч. Ведущие в мире автомобилестроительные компании США, Японии и других стран проводят испытания или работают над созданием электромобилей со скоростью до 120-140 км/ч и пробегом не менее 225 км. Тяговым электродвигателем тако­го солнцемобиля является батарея аккумуляторов, заряжаемых на гелиостанциях (гелиозаправочных станциях).

    В последние годы все большее распространение в мире получают электровелосипеды и электромопеды под общим назва­нием «легкие транспортные средства», использующие также солнечную энергию в виде аккумуляторных батарей или солнечных панелей 1 .

    Из всех загрязняющих веществ в Республике Беларусь 70 % приходится на так называемые трансграничные переносы и 30 % - на собственные, из которых львиную долю составляют передвижные источники загрязнения, в основном ав­томобили, число которых в настоящее время составляет около 4 млн. единиц. Особенно большое количество выбросов в атмосферу от автомобилей происходит в момент неус­тойчивой работы двигателей (во время торможения и начала движения).

    Основным нейтрализатором этих вредных выбросов в атмосферу явля­ются леса, занимающие 37 % территории Республики Беларусь, и болота, которые в 7 раз эффективнее, чем лес, поглощают углекислый газ. В горо­дах основным очистителем воздуха являются тополиные насаждения: один тополь очищает воздух так, как делают это 4 сосны или 7 елей, или 3 липы. Для поддержания нормальной экологической обстановки в городах необхо­димо иметь на каждого жителя 16 м 2 зеленых насаждений общего пользова­ния - парков, скверов, бульваров, лесопарков. В некоторых городах, напри­мер в Витебске, этот показатель составляет 12 м 2 .

    6.3. Экологические проблемы ядерной энергетики

    Компактность ядерного топлива в сравнении с обычным и про­стота физических и технических принципов действия реакторов деления позволяли рассчитывать на экономическую выгоду АЭС, а опыт реактора военного на­значения и первых АЭС указал на их безопасность, достигаемую достаточно простыми инженерными мерами и высокой квалификацией персонала.

    Однако эта уверенность была поколеблена большими авариями на АЭС в 70-е и 80-е годы и особенно Чернобыльской АЭС, что подчеркнуло вероят­ную природу проблемы безопасности. Поэтому некоторые страны или отказались от атомной энергии, или объявили мораторий на строительство но­вых АЭС (Австрия, Дания, Ирландия, Испания, Италия, Швеция). Перестали строить АЭС США, Канада, Англия, Германия.

    После Чернобыля Россия тоже заморозила реализацию практически всех своих «атомных» проектов. В 2000 г. действующие АЭС Российской Фе­дерации выработали 130,7 млрд кВт ч электроэнергии - значительно боль­ше, чем в 1990 г. Темп роста выработки электроэнергии на АЭС в 3 раза выше, чем на тепловых станциях.

    Выдержав «атомную паузу», в России решено достроить последний энер­гоблок на Калининской АЭС, расконсервировать незаконченное строительство всех 10 АЭС, начатое в годы советской власти. В ближайшие 20 лет эти объек­ты должны быть введены в эксплуатацию. И роль атомной энергетики в этой стране будет возрастать, в ближайшие 5 лет Россия поставит в Индию 2 атомных реактора мощностью по 1 тыс. МВт каждый.

    Принятые меры по совершенствованию конструкции и эксплуатации АЭС позволили снизить вероятность тяжелых аварий и продолжать экс­плуатацию и строительство АЭС традиционных типов. Реально общая мощ­ность всех АЭС в мире поставляет 352 ГВт.

    В настоящее время строительство АЭС продолжают топливодефицитные Япония и Южная Корея, а также многие развивающиеся страны. К концу 2010 г. в Японии планируется построить от 16 до 25 АЭС. В настоящее вре­мя суммарная электрическая мощность всех энергоблоков АЭС Японии со­ставляет около 45 ООО МВт . Продолжают ранее начатое строительство и ус­тановку новых реакторов в Аргентине, Бразилии, Чехии, Украине, Иране, Словакии.

    Во Франции первый ядерный реактор был сооружен в 1958 году, а в на­стоящее время эксплуатируется 58 ядерных энергоблоков, суммарная мощ­ность которых достигла 63 ГВт. На них производится 76 % всей вырабаты­ваемой во Франции электроэнергии. Все ядерные реакторы имеют заплани­рованный срок службы на менее 40 лет. Атомная энергетика Франции обес­печила стране около 100 000 рабочих мест, а при проведении планово-предупредительных работ на АЭС привлекаются еще примерно 100 ООО спе­циалистов из других отраслей.

    Всего в мире по состоянию на 1 января 2001 года эксплуатировалось 436 ядерных энергоблоков на 247 АЭС, которые вырабатывали 17 % электроэнер­гии в мире. В некоторых странах АЭС составляют основу национальной энер­гетики. Это обусловливает тот факт, что ядерная энергетика обладает техниче­ским и топливно-ресурсным потенциалом для внесения значительного вклада в ограничение выбросов, загрязняющих атмосферу, при выработке электроэнер­гии и энергообеспечении производства и быта людей. К примеру, выброс ССЬ в атмосферу колеблется для европейских стран - от 78 т/Гвт ч во Франции, где 78 %электроэнергии производится на АЭС, и до 868 т/Гвт ч в Дании, где нет АЭС. В Бельгии АЭС вырабатывают 58 % электроэнергии, в Швеции - 46, в Швейцарии, Германии, Японии -- около 34 %. В настоящее время АЭС пре­дотвращают выброс 2,3 млрд. т углекислого газа ежегодно, то есть 150 ядерных энергоблоков, которые сейчас работают в Западной Европе, позволяют предот­вратить выброс углекислого газа в атмосферу от 200 млн. автомобилей, кото­рыми пользуются в Европе. Это обусловливает необходимость преодоления предубежденности общества против строительства АЭС, которые дают значи­тельно меньше загрязнения окружающей среды, чем сжигание нефти и газа.

    Прогнозируемое Министерством экономики РБ потребление электро- и теплоэнергии в Беларуси к 2015 г. составит 55 млрд кВт ч и 99 млн Гкал с учетом снижения энергоемкости ВВП на 27 % за счет энергосбережения. Исходя из экономической целесообразности, в настоящее время потребность республики в электроэнергии удовлетворяется на 95 % за счет выработки на собственных электростанциях (в основном на импортном газе). Если учесть, что импорт электроэнергии, по оценкам специалистов из России, к 2015 г. будет снижен до 5 млрд.кВт ч в год, то 50 млрд. кВт - ч должны по­крываться за счет собственного производства. Изношенность энергетиче­ского оборудования такова, что из 8 млн. кВт - ч имеющихся в настоящее время мощностей к 2015 г. в работоспособном состоянии может оказаться 3 млн. кВт ч, а для удовлетворения потребности в электроэнергии в этот пе­риод потребуется дополнительно около 6 млн. кВт ч.

    В перспективе за счет всех местных видов топлива и возобновляемых ис­точников энергии с учетом выбывающих запасов нефти, попутного газа и торфа и увеличением использования возобновляемых источников их объем в топливном балансе может составить 5-6 млн т у. т. в год.

    Кроме проблемы ограниченности природных ресурсов имеется и ряд других негативных последствий использова­ния органического топлива на окружающую среду. Так, извлечение нефти и природного газа ведет к оседанию поч­вы. Нефть и газ, скопившиеся в пористых породах под по­верхностью Земли, служат своеобразной "подушкой", под­держивающей лежащую сверху породу. Когда эта подушка извлекается, земная поверхность в районе залегания неф­ти и газа опускается на глубину до 10 метров. Кроме того, извлечение из земных недр полезных ископаемых ведет к перераспределениям гравитационного напряжения в земной коре, которые иногда заканчиваются землетрясениями.

    Сжигание топлива;- не только основной источник энер­гии, но и важнейший поставщиков в окружающую среду загрязняющих веществ. Тепловые электростанции вместе с транспортом поставляют в атмосферу основную долю тех­ногенного углерода (в основном в виде СО), около 50 % диоксида серы, 35 %.оксидов, азота и около 35 % пыли.

    Экологические проблемы тепловой энергетики. В выбросах ТЭС содержится значительное количество металлов и их соединений. При пересчете на смертельные дозы в годовых выбросах ТЭС мощностью 1 млн. кВт содержится алюми­ния и его соединений свыше 100 млн. доз, железа - 400 млн. доз, магния - 1,5 млн. доз. Летальный эффект этих загряз­нителей не проявляется только потому, что они попадают в живые организмы в незначительных количествах, что, однако, не исключает их отрицательного влияния через воду, почву и другие звенья экологических систем.

    Тепловая энергетика оказывает отрицательное влияние практически на все элементы окружающей среды, в том числе на человека, другие живые организмы и их сообщества.

    Влияние энергетики на окружающую среду сильно за­висит от вида используемого топлива. Наиболее «чистым» топливом является природный газ, дающий, при его сжигании наименьшее количество загрязняющих атмосферу веществ, Далее следует нефть (мазут), каменные угли, бу­рые угли, сланцы, торф.

    При сжигании топли­ва образуется много побочных веществ. При сжигании угля образуется значительное количество золы и шлака. Боль­шую часть золы можно уловить, но не всю. Все отходящие газы, потенциально вредны, даже пары воды и диоксид угле­рода СО2. Эти газы поглощают инфракрасное излучение зем­ной поверхности и часть его вновь отражают на Земли, соз­давая так называемый "парниковый эффект", Если уровень концентрации CО2 в атмосфере Земли будет увеличиваться, могут произойти глобальные климатические изменения.

    При сжигании топлива образуется теплота, часть которой выбрасывается в атмосферу, приводя к тепловому за­грязнению атмосферы, что в конечном итоге, влечет по­вышение температуры водного и воздушного бассейнов, таянию ледников. Весь этот про­цесс накопления теплоты может привести к ощутимому повышению температуры на Земле, если использование энергии будет расти такими же темпами, как сейчас. Повышение температуры может вы­звать глубокие изменения климата на всей Земле.

    Таким же катастрофическим может быть эффект от по­ступления в атмосферу большого количества твердых час­тиц. В табл. 6.1 приводятся количественные данные о раз­личных веществах, образующихся при работе типовой ТЭС мощностью 1000 МВт на органическом топливе.

    Таблица 6.1. Данные о выбросе различных веществ при работе ТЭС, работающей на органическом топливе

    Радиоактивность дают, главным образом, изотопы радия 235Ra и 238Ra. Приводятся данные для угля. Для нефти этот показатель в 50 раз меньше.

    Экологические проблемы гидроэнергетики. Одно из важ­нейших воздействий гидроэнергетики связано с отчужде­нием значительных площадей плодородных (пойменных) земель под водохранилища, на месте которых уничтожа­ются естественные экологические системы. Значительные площади земель вблизи водохранилищ испытывают подто­пление в результате повышения уровня грунтовых вод. Эти земли; как правило, переходят в категорию заболоченных.

    Со строительством водохранилищ связано резкое нарушение гидрологического режима рек, свойственных им экосистем и видового состава населяющих их живых орга­низмов.

    Кроме того, в водохранилищах по разным причинам происходит ухудшение качества воды. В них резко увеличи­вается количество органических веществ как за счет ушедших под воду экосистем (древесина, другие растительные осадки, гумус почв и т.п.), так и в следствие их накопле­ния в результате замедленного водообмена Это своего рода отстойники и аккумуляторы веществ, поступающих с во­досбросов.

    В водохранилищах резко усиливается прогревание воды, что интенсифицирует потерю ими кислорода и другие про­цессы, обусловливаемые тепловым загрязнением. Последнее, совместно с накоплением биогенных веществ, создает ус­ловия для зарастания водоемов и интенсивного развития водорослей, в том числе и ядовитых. По этим причинам, а также вследствие медленной восстанавливаемости вод резко снижается их способность к са­моочищению. Ухудшение качества воды ведет к гибели многих ее обитателей. Возрастает заболеваемость рыбного стада, особенно поражение гельминтами. Снижаются вку­совые качества обитателей водной среды.

    Нарушаются пути миграции рыб, идет разрушение кор­мовых угодий, нерестилищ и т.п.

    В конечном счете перекрытые водохранилищами реч­ные системы из транзитных превращаются в транзитно-аккумулятивные. Кроме биогенных веществ, здесь, аккуму­лируются тяжелые металлы, радиоактивные элементы и многие ядохимикаты с длительным периодом жизни. Про­дукты аккумуляции делают проблематичным возможность использования территорий, занимаемых водохранилища­ми, после их ликвидации. Водохранилища оказывают заметное влияние на атмо­сферные процессы. Например, в засушливых районах ис­парение с поверхности водохранилищ превышает испаре­ние с равновеликой поверхности суши в десятки раз. С по­вышенным испарением связано понижение температуры воздуха, увеличение туманных явлений. Различие тепловых балансов водохранилищ и прилегающей суши обусловли­вает формирование местных ветров типа бризов. Эти, а также другие явления имеют следствием смену экосистем (не все­гда положительную), изменение погоды.

    Экологические проблемы ядерной энергетики. До недав­него времени ядерная энергетика рассматривалась как наи­более перспективная. Это связано как с относительно боль­шими запасами ядерного топлива, так и со щадащим их воздействием на окружающую среду, К преимуществам АЭС относится также возможность их строительства, не привя­зываясь к месторождениям ресурсов, поскольку их транс­портировка не требует существенных затрат в связи с ма­лыми объемами (0,5 кг ядерного топлива позволяет полу­чать столько же энергии, сколько дает сжигание 1000 тонн каменного угля).

    До недавнего времени основные экологические пробле­мы АЭС связывались с захоронением отработанного топ­лива, а также с ликвидацией самих АЭС после окончания допустимых сроков их эксплуатации.

    При нормальной работе АЭС выбросы радиоактивных элементов в окружающую среду незначительны. В среднем они в 2-4 раза меньше, чем от ТЭС такой же мощности, работающей на угле.

    После 1986 г. главную экологическую опасность АЭС ста­ли связывать с возможностью аварий на них. К наиболее крупным авариям такого плана относится авария, случив­шаяся на Чернобыльской АЭС. По различным данным, суммарный выброс продуктов деления от содержащихся в реакторе ЧАЭС составил от 3,5 % (63 кг) до 28 % (50 т) (для сравнения: бомба, сброшенная на Хиросиму, дала 740 г радиоактивного вещества).

    В результате аварии на ЧАЭС радиоактивному загрязне­нию подверглась территория в радиусе более 2 тыс. км, охва­тившая более 20 государств. В пределах бывшего СССР по­страдало 11 областей, где проживает 17 млн. человек. Общая площадь загрязненных территорий превышает 8 млн. га.

    Кроме страшных последствий аварийных ситуаций на
    АЭС можно назвать следующие их воздействия на окру­жающую среду: ,

    Разрушение экосистем и их элементов (почв, грун­тов водоносных структур и т.п.) в местах добычи руд, особенно при открытом способе добычи; -изъятие земель под строительство самих АЭС. Особенно значительные территории отчуждаются под строительство сооружений для подачи, отвода и охлаждения подогретых вод. Для АЭС мощностью 1000 МВт требуется пруд-охладитель площадью около 800~900 га. Пруды могут заменяться гигантскими градирнями с диаметром у основания 100-120 и высотой, равной 40-этажному зданию;

    Изъятие значительных объемов воды из различных источников и сброс подогретых вод. Если эти воды попадают в реки и другие естественные источники, в них наблюда­ется потеря кислорода, увеличивается вероятность цвете­ния, возрастают явления теплового стресса у водных обитателей

    Не исключено попадание радиоактивного загрязне­ния в атмосферный воздух, воду, почву в процессе добычи и транспортировки сырья, а также при работе АЭС, складировании и переработке отходов, их захоронениях.

    Таким образом, традиционные способы выработки теп­ла и электроэнергии в котельных и на ТЭС из этих первич­ных источников энергии, использование топлива в топливопотребляющих технологических установках сопряжены с:
    -разносторонним локальным и глобальным воздействием на
    окружающую среду;

    Выбросом в атмосферу вредных веществ;

    Сбросом минерализованных и нагретых вод;

    Потреблением в значительных количествах кислорода
    и нагретых вод;

    Изъятием больших площадей земли для- захоронения
    отходов (шлака, золы) и др;

    Это воздействие является причиной закисления почвы и воды, способствует возникновению парникового эффекта, обусловливающего повышение планетарной температуры, провоцирует другие необратимые процессы, кроме того, органическое топливо - это невосполнимые источники энергии, а это значит, что темпы их возобновления во мно­го раз ниже темпов их потребления.

    В результате антропогенной деятельности человечества за последние 30-40 лет планетарная температура подня­лась на 0,6-0,7°С и является наиболее высокой за послед­ние 600 лет. Поднялся средний уровень моря по сравнению с прошлым столетием на 10-15 см. За это же время отсту­пили все зарегистрированные горные ледники.

    Современные технологии способны оказывать негатив­ное воздействие не только на климат, но и на здоровье людей. Согласно докладу группы экспертов, опубликован­ных в 1997 г., воздействие продуктов сжигания только твер­дого топлива в период до 2020 г. может обернуться ежегод­ной смертью 700 тыс. человек. Сокращение же выброс

    Введение. Энергия - проблемы роста потребления

    Энергетический кризис - явление, возникающее, когда спрос на энергоносители значительно выше их предложения. Его причины могут находиться в области логистики, политики или физического дефицита.

    Потребление энергии является обязательным условием существования человечества. Наличие доступной для потребления энергии всегда было необходимо для удовлетворения потребностей человека, увеличения продол-жительности и улучшения условий его жизни.
    История цивилизации - история изобретения все новых и новых методов преобразования энергии, освоения ее новых источников и в конечном итоге увеличения энергопотребления.
    Первый скачок в росте энергопотребления произошел, когда человек научился добывать огонь и использовать его для приготовления пищи и обогрева своих жилищ. Источниками энергии в этот период служили дрова и мускульная сила человека. Следующий важный этап связан с изобретением колеса, созданием разнообразных орудий труда, развитием кузнечного производства. К XV веку средневековый человек, используя рабочий скот, энергию воды и ветра, дрова и небольшое количество угля, уже потреблял приблизительно в 10 раз больше, чем первобытный человек. Особенно заметное увеличение мирового потребления энергии произошло за последние 200 лет, прошедшие с начала индустриальной эпохи, - оно возросло в 30 раз и достигло в 1998 г. 13.7 Гигатонн условного топлива в год. Человек индустриального общества потребляет в 100 раз больше энергии, чем первобытный человек.
    В современном мире энергетика является основой развития базовых отраслей промышленности, определяющих прогресс общественного производства. Во всех промышленно развитых странах темпы развития энергетики опережали темпы развития других отраслей.
    В то же время энергетика - один из источников неблагоприятного воздействия на окружающую среду и человека. Она влияет на атмосферу (потребление кислорода, выбросы газов, влаги и твердых частиц), гидросферу (потребление воды, создание искусственных водохранилищ, сбросы загрязненных и нагретых вод, жидких отходов) и на литосферу (потребление ископаемых топлив, изменение ландшафта, выбросы токсичных веществ).
    Несмотря на отмеченные факторы отрицательного воздействия энергетики на окружающую среду, рост потребления энергии не вызывал особой тревоги у широкой общественности. Так продолжалось до середины 70-х годов, когда в руках специалистов оказались многочисленные данные, свидетельствующие о сильном антропогенном давлении на климатическую систему, что таит угрозу глобальной катастрофы при неконтролируемом росте энергопотребления. С тех пор ни одна другая научная проблема не привлекает такого пристального внимания, как проблема настоящих, а в особенности предстоящих изменений климата.
    Считается, что одной из главных причин этого изменения является энергетика. Под энергетикой при этом понимается любая область человеческой деятельности, связанная с производством и потреблением энергии. Значительная часть энергетики обеспечивается потреблением энергии, освобождающейся при сжигании органического ископаемого топлива (нефти, угля и газа), что, в свою очередь, приводит к выбросу в атмосферу огромного количества загрязняющих веществ.
    Такой упрощенный подход уже наносит реальный вред мировой экономике и может нанести смертельный удар по экономике тех стран, которые еще не достигли необходимого для завершения индустриальной стадии развития уровня потребления энергии, в том числе России. В действительности все обстоит гораздо сложнее. Помимо парникового эффекта, ответственность за который, частично лежит на энергетике, на климат планеты оказывает влияние ряд естественных причин, к числу важнейших из которых относятся солнечная активность, вулканическая деятельность, параметры орбиты Земли, автоколебания в системе атмосфера-океан. Корректный анализ проблемы возможен лишь с учетом всех факторов, при этом, разумеется, необходимо внести ясность в вопрос, как будет вести себя мировое энергопотребление в ближайшем будущем, действительно ли человечеству следует установить жесткие самоограничения в потреблении энергии с тем, чтобы избежать катастрофы глобального потепления.

    Современные тенденции развития энергетики

    Общепринятая классификация подразделяет источники первичной энергии на коммерческие и некоммерческие .
    Коммерческие источники
    энергии включают в себя твердые (каменный и бурый уголь, торф, горючие сланцы, битуминозные пески), жидкие (нефть и газовый конденсат), газообразные (природный газ) виды топлива и первичное электричество (электроэнергия, произведенная на ядерных, гидро-, ветровых, геотермальных, солнечных, приливных и волновых станциях).
    К некоммерческим относят все остальные источники энергии (дрова, сельскохозяйственные и промышленные отходы, мускульная сила рабочего скота и собственно человека).
    Мировая энергетика в целом на протяжении всей индустриальной фазы развития общества основана преимущественно на коммерческих энергоресурсах (около 90% общего потребления энергии). Хотя следует отметить, что существует целая группа стран (экваториальная зона Африки, Юго-Восточная Азия), многочисленное население которых поддерживает свое существование почти исключительно за счет некоммерческих источников энергии.
    Различного рода прогнозы потребления энергии, базирующиеся на данных за последние 50-60 лет предполагают, что примерно до 2025 г. ожидается сохранение современного умеренного темпа роста мирового потребления энергии - около 1.5% в год и проявившая себя в последние 20 лет стабилизация мирового душевого потребления на уровне 2.3-2.4 т усл.топл./(чел.-год). После 2030 г. по прогнозу начнется медленное снижение среднемирового уровня душевого потребления энергии к 2100 г. При этом общее потребление энергии обнаруживает явную тенденцию к стабилизации после 2050 г. и даже слабого уменьшения к концу века.
    Одним из важнейших факторов, учитывавшихся при разработке прогноза, является обеспеченность ресурсами мировой энергетики, базирующейся на сжигании ископаемого органического топлива.
    В рамках рассматриваемого прогноза, безусловно, относящегося к категории умеренных по абсолютным цифрам потребления энергии, исчерпание разведанных извлекаемых запасов нефти и газа наступит не ранее 2050 г., а с учетом дополнительных извлекаемых ресурсов - после 2100 г. Если принять во внимание, что разведанные извлекаемые запасы угля значительно превосходят запасы нефти и газа, вместе взятые, то можно утверждать, что развитие мировой энергетики по данному сценарию обеспечено в ресурсном отношении более чем на столетие.
    Вместе с тем, результаты прогнозов дают значительный разброс, что хорошо видно из подборки некоторых опубликованных данных прогнозов на 2000 г.

    Таблица 5.7. Некоторые недавние прогнозы энергопотребления на 2000 г.
    (в скобках - год публикации) и его действительное значение.

    Прогностический центр Потребление первичной энергии,
    Гт усл.топл./год
    Институт атомной энергии (1987) 21.2
    Международный институт прикладного системного анализа (IIASA) (1981) 20.0
    Международное агентство по атомной энергии (МАГАТЭ) (1981) 18.7
    Окриджская национальная лаборатория (ORNL) (1985) 18.3
    Международная комиссия по изменению климата (IPCC) (1992) 15.9
    Лаборатория глобальных проблем энергетики ИБРАЭ РАН-МЭИ (1990) 14.5
    Действительное энергопотребление 14.3

    Уменьшение энергопотребления по отношению к прогнозируемому связаны, прежде всего, с переходом от экстенсивных путей ее развития, от энергетической эйфории к энергетической политике, основанной на повышении эффективности использования энергии и всемерной ее экономии.
    Поводом для этих изменений стали энергетические кризисы 1973 и 1979 годов, стабилизация запасов ископаемых топлив и удорожание их добычи, желание уменьшить обусловленную экспортом энергоресурсов зависимость экономики от политической нестабильности в мире.

    Вместе с тем, говоря о потреблении энергии, следует отметить, что в постиндустриальном обществе должна быть решена еще одна основополагающая задача - стабилизация численности населения.
    Современное общество, не решившее эту проблему или, по крайней мере, не предпринимающее усилий для ее решения, не может считаться ни развитым, ни цивилизованным, поскольку совершенно очевидно, что бесконтрольный рост населения ставит непосредственную угрозу существования человека как биологического вида.
    Итак, потребление энергии на душу населения в мире обнаруживает явную тенденцию к стабилизации. Следует отметить, что этот процесс начался еще около 25 лет тому назад, т.е. задолго до нынешних спекуляций на глобальном изменении климата. Такое явление в мирное время наблюдается впервые с начала индустриальной эпохи и связано с массовым переходом стран мира в новую, постиндустриальную стадию развития, в которой потребление энергии на душу населения остается постоянным. Указанный факт имеет весьма важное значение, поскольку в результате и величина общего потребления энергии в мире растет гораздо более медленными темпами. Можно утверждать, что серьезное замедление темпов роста энергопотребления оказалось полной неожиданностью для многих прогнозистов.

    Кризис топливных ресурсов

    В начале 70-х годов страницы газет запестрели заголовками: «Энергетический кризис!», «Надолго ли хватит органического топлива?», «Конец нефтяного века!», «Энергетический хаос». Этой теме до сих пор большое внимание уделяют все средства массовой информации - печать, радио, телевидение. Основания для такой тревоги есть, ибо человечество вступило в сложный и достаточно долгий период мощного развития своей энергетической базы. Поэтому следуете просто расходовать известные сегодня запасы топлива, но расширяя масштабы современной энергетики, отыскивать новые источники энергии и развивать новые способы её преобразования.
    Прогнозов о развитии энергетики сейчас очень много. Тем не менее, несмотря на улучшившуюся методику прогнозирования, специалисты, занимающиеся прогнозами, не застрахованы от просчетов, и не имеют достаточных оснований говорить о большой точности своих прогнозов для такого временного интервала, каким являются 40-50 лет.
    Человек всегда будет стремиться обладать как можно большим количеством энергии, обеспечивающим движение вперед. Не всегда наука и техника дадут ему возможность получать энергию во всевозрастающих объемах. Но, как показывает историческое развитие, обязательно будут появляться новые открытия и изобретения, которые помогут человечеству сделать очередной качественный скачок и пойти к новым достижениям ещё более быстрыми шагами.
    Тем не менее, пока проблема истощения энергетических ресурсов остается. Ресурсы, которыми обладает Земля, делятся на возобновляемые и невозобновляемые . К первым относятся солнечная энергия, тепло Земли, приливы океанов, леса. Они не прекратят существования, пока будут Солнце и Земля. Невозобновляемые ресурсы не восполняются природой или восполняются очень медленно, гораздо медленнее, чем их расходуют люди. Скорость образования новых горючих ископаемых в недрах Земли определить довольно трудно. В связи с этим оценки специалистов различаются более чем в 50 раз. Если даже принять самое большое это число, то все равно скорость накопления топлива в недрах Земли в тысячу раз меньше скорости его потребления. Поэтому такие ресурсы и называют невозобновляемыми. Оценка запасов и потребления основных из них приведена в табл.5.44. В таблице приведены потенциальные ресурсы. Поэтому при существующих сегодня методах добычи из них можно извлечь только около половины. Другая половина остается в недрах. Именно поэтому, часто утверждают, что запасов хватит на 120-160 лет. Большую тревогу вызывает намечающееся истощение нефти и газа, которого (по имеющимся оценкам) может хватить всего на 40-60 лет.
    С углем свои проблемы. Во-первых, его транспортировка - дело весьма трудоемкое. Так в России, основные запасы угля сосредоточены на востоке, а основное потребление - в европейской части. Во-вторых, широкое использование угля связано с серьезным загрязнением атмосферы, засорением поверхности земли и ухудшением почвы.
    В разных странах все перечисленные проблемы выглядят различно, но решение их почти везде было одно - внедрение атомной энергетики. Запасы уранового сырья тоже ограничены. Однако если говорить о современных тепловых реакторах усовершенствованного типа, то для них, вследствие достаточно большой их эффективности, можно считать запасы урана практически безграничными.
    Так почему же люди заговорили об энергетическом кризисе, если запасов только органического топлива хватит на сотни лет, а в резерве ещё ядерное?
    Весь вопрос в том, сколько оно стоит. И именно с этой стороны нужно рассматривать сейчас энергетическую проблему. в недрах земли ещё много, но их добыча Нефти, газа стоит все дороже и дороже, так как эту энергию приходится добывать из более бедных и глубоко залегающих пластов, из небогатых месторождений, открытых в необжитых, труднодоступных районах. Гораздо больше приходится и придется вкладывать средств для того, чтобы свести к минимуму экологические последствия использования органического топлива.
    Атомная энергия внедряется сейчас не потому, что она обеспечена топливом на столетия и тысячелетия, а, скорее из-за экономии и сохранения на будущее нефти и газа, а также из-за возможности уменьшения экологической нагрузки на биосферу.
    Существует распространенное мнение, что стоимость электроэнергии АЭС значительно ниже стоимости энергии, вырабатываемой на угольных, а в перспективе - и газовых электростанциях. Но если подробно рассмотреть весь цикл атомной энергетики (от добычи сырья до утилизации РАО, включая расходы на строительство самой АЭС), то эксплуатация АЭС и обеспечение ее безопасной работы оказываются дороже, чем строительство и работа станции такой же мощности на традиционных источниках энергии (табл.5.8 на примере экономики США).
    Поэтому в последнее время все больший акцент делается на энергосберегающих технологиях и возобновляемых источниках - таких как солнце, ветер, водная стихия. Например, в Европейском союзе поставлена цель к 2010-2012 гг. получать 22% электроэнергии с помощью новых источников. В Германии, например, уже в 2001 г. энергия, производимая от возобновимых источников, была равносильна работе 8 атомных реакторов, или 3.5% всей электроэнергии.
    Многие считают, что будущее принадлежит дарам Солнца. Однако, оказывается и здесь все не так просто. Пока стоимость получения электроэнергии с применением современных солнечных фотоэлектрических элементов в 100 раз выше, чем на обычных электростанциях. Однако специалисты, занимающиеся фотоэлементами, полны оптимизма, и считают, что им удастся существенно снизить их стоимость.
    Точки зрения специалистов на перспективы использования возобновляемых источников энергии очень различаются. Комитет по науке и технике в Англии, проанализировав перспективы освоения таких источников энергии, пришел к выводу, что их использование на базе современных технологий пока минимум в два-четыре раза дороже строительства АЭС. Другие специалисты в различных прогнозах этим источникам энергии уже в недалеком будущем. По-видимому, источники возобновляемой энергии будут применяться в отдельных районах мира, благоприятных для их эффективного и экономичного использования, но в крайне ограниченных масштабах. Основную долю энергетических потребностей человечества должны обеспечить уголь и атомная энергетика. Правда, пока нет настолько дешевого источника, который позволил бы развивать энергетику такими быстрыми темпами, как бы этого хотелось.
    Сейчас и на предстоящие десятилетия наиболее экологичным источником энергии представляются ядерные, а затем, возможно, и термоядерные редакторы. С их помощью человек и будет двигаться по ступеням технического прогресса. Будет двигаться до тех пор, пока не откроет и не освоит какой-либо другой, более удобный источник энергии.
    На рис.5.38 приведен график роста мощности АЭС в мире и производства электроэнергии за 1971-2006 гг., и прогнозы развития на 2020-30 гг. Помимо упомянутых выше, несколько развивающихся стран, таких, как Индонезия, Египет, Иордания и Вьетнам, заявили о возможности создания АЭС и сделали первые шаги в этом направлении.



    Рис.5.38. (наверху ) Рост мощности АЭС и производства электроэнергии за 1971-2006 гг. по данным МАГАТЭ и прогнозы мощности АЭС в Мире на 2020-2030 гг. (внизу )

    Экологический кризис энергетики

    Основные формы влияния энергетики на окружающую среду состоят в следующем.

    1. Основной объем энергии человечество пока получает за счет использования невозобновимых ресурсов.
    2. Загрязнение атмосферы: тепловой эффект, выделение в атмосферу газов и пыли.
    3. 3. Загрязнение гидросферы: тепловое загрязнение водоемов, выбросы загрязняющих веществ.
    4. Загрязнение литосферы при транспортировке энергоносителей и захоронении отходов, при производстве энергии.
    5. Загрязнение радиоактивными и токсичными отходами окружающей среды.
    6. Изменение гидрологического режима рек гидроэлектростанциями и как следствие загрязнение на территории водотока.
    7. Создание электромагнитных полей вокруг линий электропередач.

    Согласовать постоянный рост энергопотребления с ростом отрицательных последствий энергетики, учитывая, что в ближайшее время человечество ощутит ограниченность ископаемого топлива, можно, по-видимому, двумя способами

    1. Экономия энергии. Степень влияния прогресса на экономию энергии можно продемонстрировать на примере паровых машин. Как известно, КПД паровых машин 100 лет назад составлял 3-5%, а сейчас достигает 40%. Развитие мировой экономики после энергетического кризиса 70 годов также показало, что на этом пути у человечества есть значительные резервы. Применение ресурсосберегающих и энергосберегающих технологий обеспечило значительное сокращение потребления топлива и материалов в развитых странах.
    2. Развитие экологически более чистых видов производства энергии. Решить проблему, вероятно, способно развитие альтернативных видов энергетики, особенно базирующихся на использовании возобновляемых источников. Однако пути реализации данного направления пока не очевидны. Пока возобновимые источники дают не более 20 % общемирового потребления энергии. Основной вклад в эти 20% дают использование биомассы и гидроэнергетика.

    Экологические проблемы традиционной энергетики

    Основная часть электроэнергии производится в настоящее время на тепловых электростанциях (ТЭС). Далее обычно идут гидроэлектростанции (ГЭС) и атомные электростанции (АЭС).